Laplace approximation for measurement error correction in generalized linear (mixed) models
نویسنده
چکیده
The Laplace approximation is applied to measurement error models when the likelihood function involves high dimensional integrals. The cases considered are generalized linear models with multiple covariates measured with error and generalized linear mixed models with measurement error in the covariates. The asymptotic order of the approximation and the asymptotic properties of the Laplace-based estimator for these models are shown to depend on the measurement error variance. Simulation studies are presented to illustrate the performance of the method.
منابع مشابه
Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملStochastic Restricted Two-Parameter Estimator in Linear Mixed Measurement Error Models
In this study, the stochastic restricted and unrestricted two-parameter estimators of fixed and random effects are investigated in the linear mixed measurement error models. For this purpose, the asymptotic properties and then the comparisons under the criterion of mean squared error matrix (MSEM) are derived. Furthermore, the proposed methods are used for estimating the biasing parameters. Fin...
متن کاملPractical likelihood analysis for Spatial Generalized Linear Mixed Models
We propose a standard approach to make inference for spatial generalized linear mixed models using Laplace approximation. Based on analysis of two datasets previous analysed in literature, we compare our approach with different approaches. The first the rhizoctonia root rot dataset is an example of Binomial SGLMM and the second rongelap dataset is an example of Poisson or Negative Binomial SGLM...
متن کاملComparison of Different Estimation Methods for Linear Mixed Models and Generalized Linear Mixed Models
Linear mixed models (LMM) and generalized linear mixed models (GLMM) are widely used in regression analyses. With the variance structure dependent on the random effects with their variance components, the parameter estimation of LMMs is more complicated than linear models (LM). Generally, we use maximum likelihood estimation (MLE) together with some procedure such as derivative free optimizatio...
متن کاملGaussian Variational Approximate Inference for Generalized Linear Mixed Models
Variational approximation methods have become a mainstay of contemporary Machine Learning methodology, but currently have little presence in Statistics. We devise an effective variational approximation strategy for fitting generalized linear mixed models (GLMM) appropriate for grouped data. It involves Gaussian approximation to the distributions of random effects vectors, conditional on the res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010